The Dream of EVAR Is Not Over! EVAR Is Getting Better

Young-Guk Ko, M.D.

Severance Cardiovascular Hospital, Yonsei University Health System,

Seoul, Korea

VOL. 5, NO. 10, 2012 ISSN 1936-8798/\$36.00 http://dx.doi.org/10.1016/j.jcin.2012.06.015

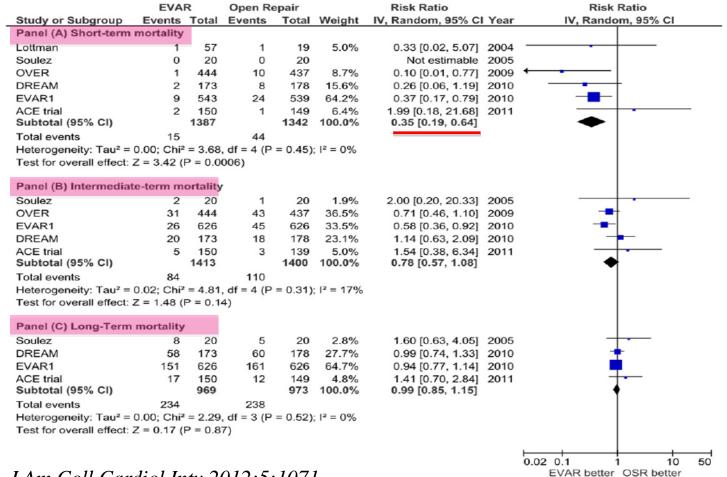
Open Versus Endovascular Stent Graft Repair of Abdominal Aortic Aneurysms

A Meta-Analysis of Randomized Trials

George Dangas, MD,* David O'Connor, MD,† Belal Firwana, MD,* Somjot Brar, MD,‡ Sharif Ellozy, MD,† Angeliki Vouyouka, MD,† Margaret Arnold, MD,† Constantine E. Kosmas, MD,* Prakash Krishnan, MD,* Jose Wiley, MD,* Javed Suleman, MD,* Jeffrey Olin, MD,\$ Michael Marin, MD,† Peter Faries, MD†

New York, New York; and Los Angeles, California

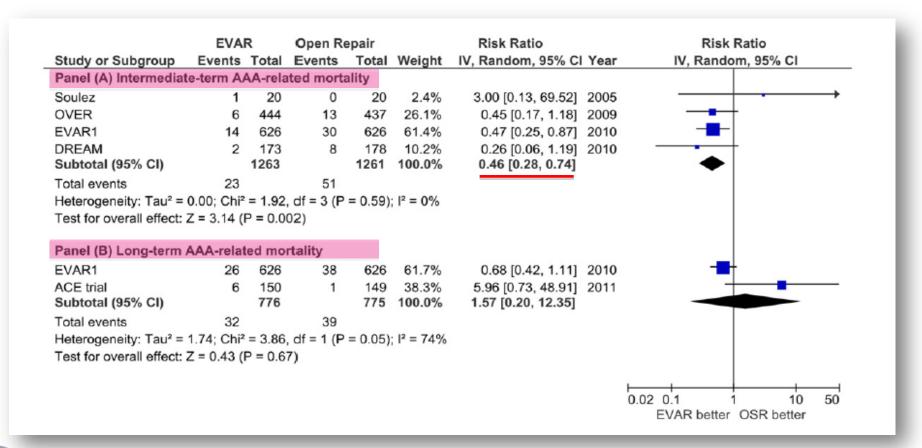
Dangas G, J Am Coll Cardiol Intv 2012;5:1071


Table 1.	Trial	Description	and Qualit	y Assessment
----------	-------	-------------	------------	--------------

Trial (Ref. #)	Year	Study Location	Institutions, n	Subjects Randomized, N	Study Period	Max Follow-Up Time, yrs	Mean/Median Follow-Up Time, yrs	Adequate Sequence Generation	Clear Inclusion/ Exclusion Criteria
ACE (12)	2011	France	25	306	2003-2009	4.80	3.00	Yes	Clear
DREAM (13,14,19)	2004, 2005, 2010	Netherlands	25	351	2000-2009	8.20	6.40	Yes	Clear
EVAR-1 (11,15,16)	2004, 2005, 2010	United Kingdom	37	1,252	1999–2009	10.00	6.00	Yes	Clear
OVER (17)	2009	United States	42	881	2002-2008	2.00	1.80	Yes	Clear
Soulez et al. (20)	2005	Canada	1	40	1998-2002	4.00	2.30	Yes	Clear
Lottman et al. (18)	2004	Netherlands	2	76	1996-1999	0.25	0.25	Yes	Clear

ACE = ACE [Carotid Endarterectomy] trial; DREAM = Dutch Randomized Endovascular Aneurysm Management trial; EVAR-1 = United Kingdom Endovascular Aneurysm Repair 1 trial; OVER = Open Versus Endovascular Repair trial.

All-cause Mortality



Dangas G, J Am Coll Cardiol Intv 2012;5:1071

thice Caratovascular Hospital, 10nsel University Health System

Reintervention Rates

Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% C	Vear	IV, Randon	n 95% CI
Panel (A) Intermediat					TTOIGHT	iv, italiaolii, 5576 O	rour	14,11411401	11, 00 /0 01
Soulez	3	20	1	20	2.4%	3.00 [0.34, 26.45]	2005	22 <u></u>	
OVER	46	444	40	437	38.0%	1.13 [0.76, 1.69]		_	_
	66							I.	
EVAR1	17.00	626	40	525	40.9%	1.38 [0.95, 2.01]			-
DREAM	21	173	9	178	16.3%	2.40 [1.13, 5.09]			GRA .
ACE trial Subtotal (95% CI)	6	150 1413	1	149 1309	2.5% 100.0%	5.96 [0.73, 48.91] 1.48 [1.06, 2.08]	2011		•
Total events	142		91						
OTOL STOLLO	1 1 400								
Heterogeneity: Tau² = Test for overall effect:	0.04; Chi ² Z = 2.27 (l	P = 0.0	2)	9 = 0.25	5); I ² = 25%	6			
Heterogeneity: Tau ² = Fest for overall effect: Panel (B) Long-term Soulez	0.04; Chi ² Z = 2.27 (l reinterver	P = 0.00 ntion ra 20	2) ite	20	4.6%	4.00 [0.49, 32.72]			
Heterogeneity: Tau ² = Fest for overall effect: Fanel (B) Long-term Soulez DREAM	0.04; Chi ² Z = 2.27 (I reinterver 4 48	P = 0.03 ntion ra 20 173	2) ate 1 30	20 178	4.6% 38.0%	4.00 [0.49, 32.72] 1.65 [1.10, 2.47]	2010		•
Heterogeneity: Tau² = Fest for overall effect: Panel (B) Long-term Soulez DREAM EVAR1	0.04; Chi ² Z = 2.27 (I reinterver 4 48 121	P = 0.00 ntion ra 20 173 626	1 30 46	20 178 626	4.6% 38.0% 42.6%	4.00 [0.49, 32.72] 1.65 [1.10, 2.47] 2.63 [1.91, 3.63]	2010 2010		•
Heterogeneity: Tau ² = Fest for overall effect: Panel (B) Long-term Soulez DREAM EVAR1 ACE trial Subtotal (95% CI)	0.04; Chi ² Z = 2.27 (I reinterver 4 48	P = 0.03 ntion ra 20 173	2) ate 1 30	20 178	4.6% 38.0% 42.6% 14.8%	4.00 [0.49, 32.72] 1.65 [1.10, 2.47]	2010 2010		•
Heterogeneity: Tau ² = Fest for overall effect: Panel (B) Long-term Soulez DREAM EVAR1 ACE trial	0.04; Chi ² Z = 2.27 (I reinterver 4 48 121	P = 0.00 ntion ra 20 173 626 150	1 30 46	20 178 626 149	4.6% 38.0% 42.6% 14.8%	4.00 [0.49, 32.72] 1.65 [1.10, 2.47] 2.63 [1.91, 3.63] 5.96 [2.12, 16.76]	2010 2010		•
Heterogeneity: Tau² = Fest for overall effect: Panel (B) Long-term Soulez DREAM EVAR1 ACE trial Subtotal (95% CI)	0.04; Chi ² Z = 2.27 (I reinterver 4 48 121 24	P = 0.00 20 173 626 150 969	2) ate 1 30 46 4 81	20 178 626 149 973	4.6% 38.0% 42.6% 14.8% 100.0%	4.00 [0.49, 32.72] 1.65 [1.10, 2.47] 2.63 [1.91, 3.63] 5.96 [2.12, 16.76] 2.53 [1.58, 4.05]	2010 2010		• •
Heterogeneity: Tau² = Fest for overall effect: Panel (B) Long-term Soulez DREAM EVAR1 ACE trial Subtotal (95% CI) Fotal events	0.04; Chi ² Z = 2.27 (I reinterver 4 48 121 24 197 0.11; Chi ²	P = 0.00 ntion ra 20 173 626 150 969 = 6.79	1 30 46 4 81 , df = 3 (F	20 178 626 149 973	4.6% 38.0% 42.6% 14.8% 100.0%	4.00 [0.49, 32.72] 1.65 [1.10, 2.47] 2.63 [1.91, 3.63] 5.96 [2.12, 16.76] 2.53 [1.58, 4.05]	2010 2010		•

Real World: Medicare data

Comparison of Long-term Survival After Open vs Endovascular Repair of Intact Abdominal Aortic Aneurysm **Among Medicare Beneficiaries**

Rubie Sue Jackson, MD, MPH David C. Chang, PhD, MPH, MBA Julie A. Freischlag, MD

NDOVASCULAR REPAIR OF ABdominal aortic aneurysm (AAA), initially introduced as an option for high-risk patients, has surpassed open surgery as the most common technique for elective management of AAA among Medicare beneficiaries in the United States.2 In randomized clinical trials (RCTs), endovascular AAA repair has been shown to decrease 30-day and in-hospital mortality,3,4 blood transfusion requirements, duration of mechanical ventilation, and intensive care unit and hospital length of stay after repair.4 However, RCTs have failed to demonstrate a long-term survival advantage of endovascular compared with open repair.3-5 Furthermore, compared with open repair, endovascular repair incurs higher costs3 and a need for longterm surveillance because of a 25% to 40% late complication rate,6,7 leading to ongoing controversy over the elective use of endovascular repair, especially in healthy patients with anticipated long-term survival.

Although clinical trials have failed to demonstrate a long-term mortality difference between open and endovascular repair, certain characteristics of RCTs limit the applicability of their results in clinical practice. In RCTs, rehigh-volume centers by vascular sur- in clinical practice.8 Most impor-

Context Endovascular repair of abdominal aortic aneurysm (AAA) compared with open repair increases perioperative survival, but it is not known if it increases long-

Objective To compare long-term outcomes after open vs endovascular repair of AAA.

Design, Setting, and Patients Retrospective analysis of patients 65 years or older in the Medicare Standard Analytic File, 2003-2007, who underwent isolated repair of intact AAA. Cause of death was determined from the National Death Index

Main Outcome Measures The primary outcome was all-cause mortality. Secondary outcomes were AAA-related mortality, hospital length of stay, 1-year readmission, repeat AAA repair, incisional hernia repair, and lower extremity amputation.

Results Of 4529 included patients, 703 were classified as having undergone open repair and 3826 as having undergone endovascular repair. Mean and median follow-up times were 2.6 (SD, 1.5) and 2.5 (interquartile range, 2.4) years, respectively. In unadjusted analysis, both all-cause mortality (173 vs 752; 89 vs 76/1000 person-years, P=.04) and AAA-specific mortality (22 vs 28; 11.3 vs 2.8/1000 person-years, P < .001) were higher after open vs endovascular repair. After adjusting for emergency admission, age, calendar year, sex, race, and comorbidities, there was a higher risk of both all-cause mortality (hazard ratio [HR], 1.24 [95% CI, 1.05-1.47]; P=.01) and AAA-related mortality (HR, 4.37 [95% CI, 2.51-7.66]; P < .001) after open vs endovascular repair. The adjusted hospital length of stay was, on average, 6.5 days (95% CI, 6.0-7.0 days, P<.001) longer after open repair (mean, 10.4 days), compared with endovascular repair (mean, 3.6 days). Incidence of incisional hernia repair was higher after open AAA repair (19 vs 23; 12 vs 3 per 1000 person-years; adjusted HR, 4.45 [95% CI, 2.37-8.34, P<.001]), whereas the incidence of 1-year readmission (188 vs 1070; 274 vs 376/1000 person-years; adjusted HR, 0.96 [95% CI, 0.85-1.09, P=.52]), repeat AAA repair (15 vs 93; 9.7 vs 12.3/1000 person-years; adjusted HR, 0.80 [95% CI, 0.46-1.38, P=.42]), and lower extremity amputation (3 vs 25; 1.9 vs 3.3/1000 person-years; adjusted HR, 0.55 [95% CI, 0.16-1.86, P=.34) did not differ by repair type.

Conclusion Among older patients with isolated intact AAA, use of open repair compared with endovascular repair was associated with increased risk of all-cause mortality and AAA-related mortality.

JAMA. 2012;307(15):1621-1628

Comorbidity^a

COPD

Diabetes mellitus

Essential hypertension

Congestive heart failure

Chronic renal failure

geons experienced in endovascular technique. Participants in RCTs comparing endovascular with open AAA repair have, on average, fewer and less severe comorbidities and are more likely pair of AAA is usually performed at to be male than patients encountered

Author Affiliations: Department of Surgery, Georgetown University Hospital, Washington, DC (Dr Jackson); Department of Surgery, University of California, San Diego (Dr Chang); and Department of Surgery, the Johns Honkins Medical Institutions, Raltimore Maryland (Dr Freischlag)

Corresponding Author: Rubie Sue Jackson. MD. MPH. Department of Surgery, Georgetown University Hospital, 3800 Reservoir Rd, Washington, DC 20007 (rmaybury@jhsph.edu).

JAMA, April 18, 2012-Vol 307, No. 15 1621

Characteristic	Open Repair (n = 703)	Endovascular Repair (n = 3826)	<i>P</i> Value	
Sex				
Men	498 (70.8)	3057 (79.9)	<.001	
Women	205 (29.2)	768 (20.1)	<.001	
Race				
White	660 (93.9)	3602 (94.2)		
Black	32 (4.6)	113 (3.0)	.06	
Other	11 (1.5)	111 (2.8)		
Age, mean (SD)	75.2 (5.7)	76.4 (6.3)	<.001	
Year of surgery				
2003	143 (20.4)	558 (14.6)		
2004	183 (26.0)	718 (18.8)		
2005	164 (23.3)	804 (21.0)	<.001	
2006	128 (18.2)	922 (24.1)		
2007	85 (12.1)	823 (21.5)		
Emergency admission	64 (23.3)	562 (14.7)	<.001	
No. of CCS categories, mean (SD)	4.6 (4.01)	5.0 (3.78)	.003	

105 (14.9)

379 (53.9)

29 (4.1)

93 (13.2)

177 (25.2)

Table 1. Baseline Patient Characteristics, by Repair Type

719 (18.8)

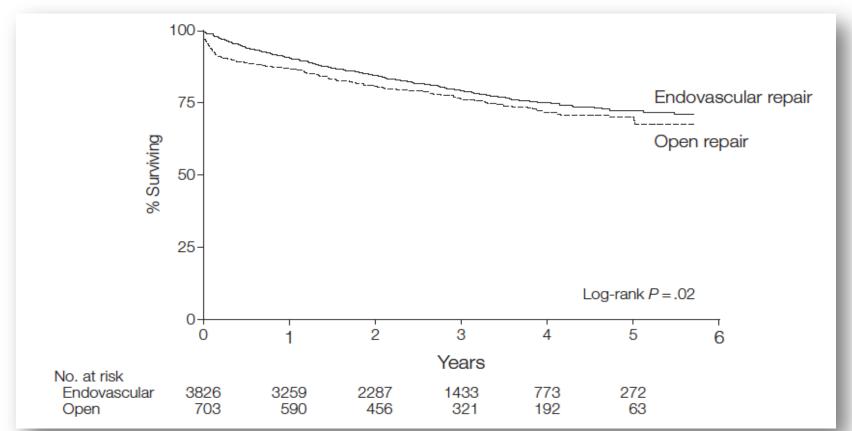
2261 (59.1)

116 (3.0)

472 (12.3)

929 (24.3)

.02


.01

.13

.51

.61

Survival After Open vs Endovascular Repair of AAA

Overall and Cause-Specific Mortality

	No. (Unadjusted No. of Deaths)							
	Overall I	Mortality ^a		Overall Mortality Excluding 30-d Mortalities				
Mortality	Endovascular Repair (n = 3825)	Open Repair (n = 703)	<i>P</i> Value	Endovascular Repair (n = 3778)	Open Repair (n = 662)	<i>P</i> Value		
Overall	76 (752)	89 (173)	.04	71 (705)	68 (132)	.30		
Aneurysm-related Abdominal aortic aneurysm	2.8 (28)	11.3 (22)	<.001	2.2 (22)	3.1 (6)	.36		
Thoracic/thoracoabdominal aortic aneurysm	0.5 (5)	0	.52	0.5 (5)	0	.52		
Aortic aneurysm, unspecified	1.4 (14)	2.6 (5)	.19	1.0 (10)	0.5 (1)	.57		
Aneurysm, other	0.2 (2)	1.0 (2)	.52	0.2 (2)	0	.55		
Cardiovascular Coronary artery disease	15.1 (149)	13.3 (26)	.67	13.6 (134)	11.3 (22)	.49		
Heart failure	2.2 (22)	4.6 (9)	.04	2.2 (22)	3.6 (7)	.20		
Other cardiovascular disease	8.7 (86)	5.6 (28)	<.001	7.7 (76)	10.3 (20)	.04		
Cancer	18.4 (182)	15.9 (31)	.47	18.5 (182)	15.9 (1)	.47		
COPD	6.1 (60)	5.1 (10)	.66	5.8 (58)	4.1 (8)	.34		
Other	19.4 (192)	20.0 (39)	.75	18.5 (183)	19.0 (7)	.79		

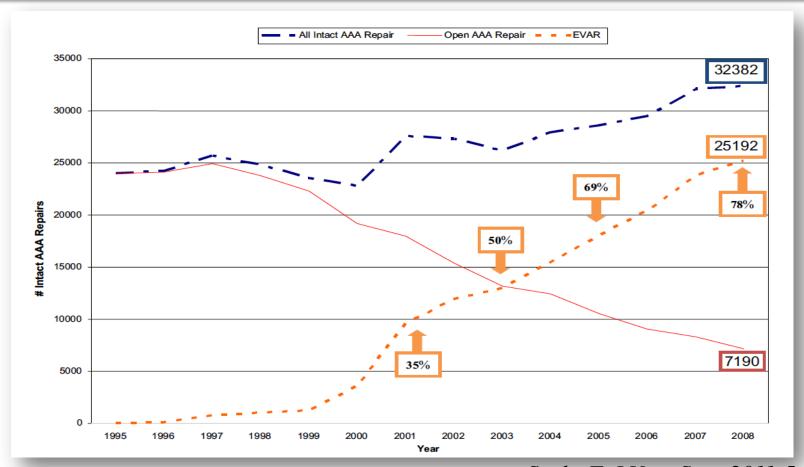
Abbreviation: COPD, chronic obstructive pulmonary disease.

^bThe endovascular repair group included 9873 person-years of follow-up (85.1% of total); the open repair group included 1946 person-years (14.9% of total).

^aThe endovascular repair group included 9874 person-years of follow-up (84.5% of total); the open repair group included 1948 person-years (15.5% of total).

Numbers of Events for Open and Endovascular Repair

	Unadj	Unadjusted				
	No. of Eve	nts		HR (95% CI)	۱'	
Outcome	Endovascular Repair (n = 3826)	Open Repair (n = 703)	<i>P</i> Value ^a	for Open vs Endovascular Repair	<i>P</i> Value	
All-cause mortality Overall	752	173	.04	1.24 (1.05-1.47)	.01	
Within <1 mo of surgery	47	41	<.001	5.54 (3.47-8.82)	<.001	
≥1 mo after surgery	705	132	.08	1.01 (0.84-1.22)	.91	
AAA-related mortality Overall	28	22	<.001	4.37 (2.51-7.66)	<.001	
Within <1 mo of surgery	6	21	<.001	16.99 (4.62-62.54)	<.001	
≥1 mo after surgery	22	6	.36	1.35 (0.44-4.11)	.60	
1-year readmission	1070	188	.50	0.96 (0.85-1.09)	.52	
Repeat AAA repair	93	15	.20	0.80 (0.46-1.38)	.42	
Incisional hernia repair	23	19	<.001	4.45 (2.37-8.34)	<.001	
Lower extremity amputation	25	3	.20	0.55 (0.16-1.86)	.34	



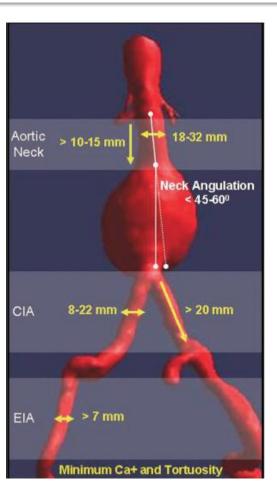
Diagnosis Associated With Repeat Repair

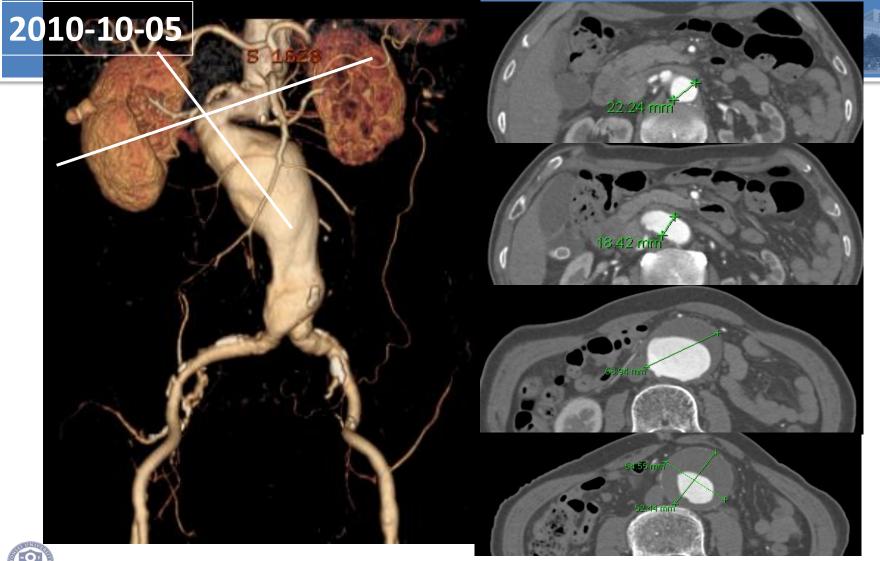
Diagnosis (ICD-9 Codes)	Open Repair (n = 15)	Endovascular Repair (n = 93)	<i>P</i> Value
Mechanical complication of vascular graft (996.1, 996.59)	0	36 (38.7)	.003
Graft infection (996.60)	0	2 (2.2)	.57
Graft rupture (441.3, 441.5)	0	6 (6.5)	.31
Aortic atherosclerosis (440.0) or graft atherosclerosis (996.74)	0	11 (11.8)	.16
Embolization to lower extremities (444.2, 444.22)	1 (6.7)	4 (4.3)	.69



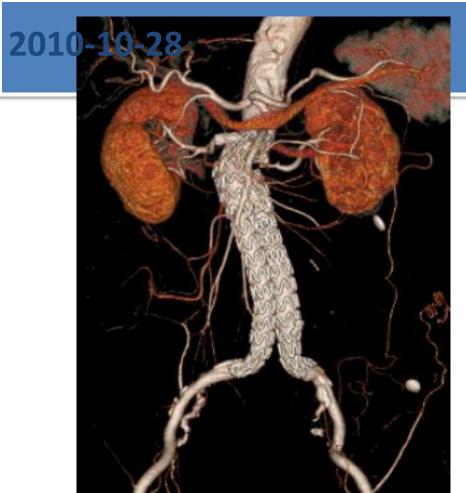
The Number of Open and Endovascular AAA Repairs in the US Medicare Population

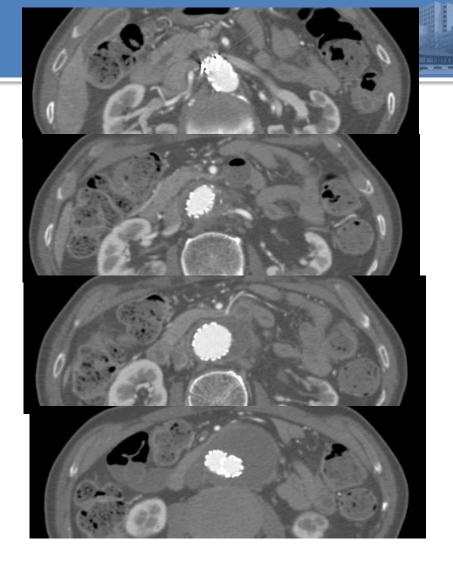
Mortality Rates: EVAR vs. Open Techniques in the Medicare Population

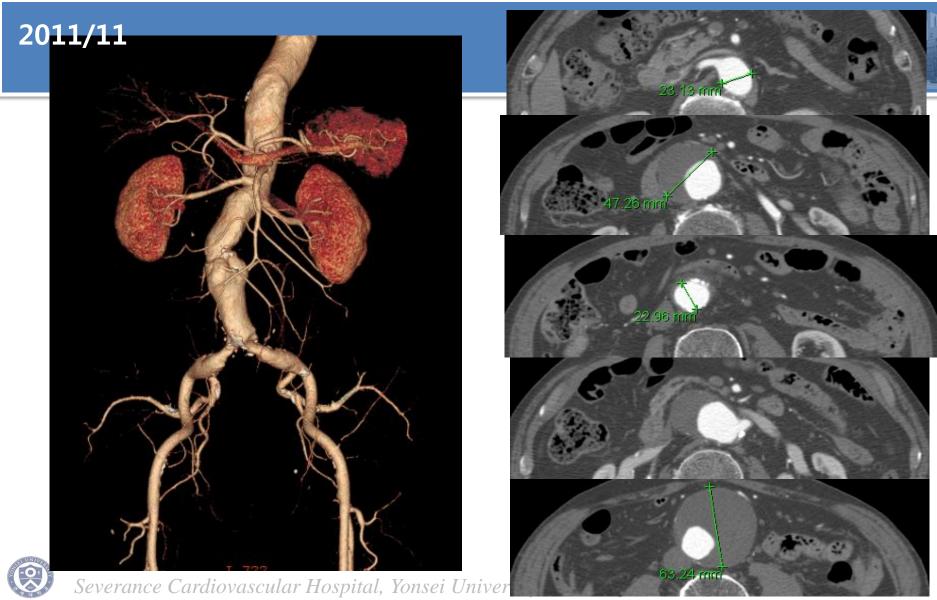


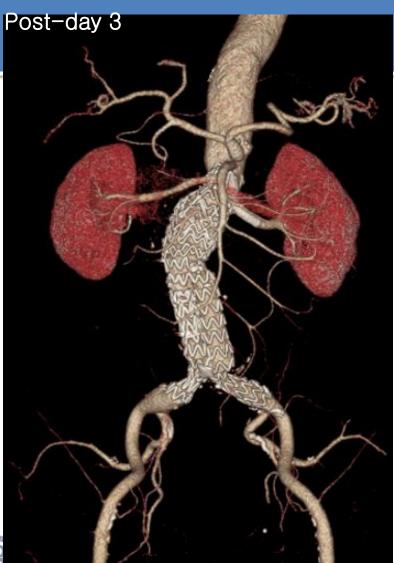


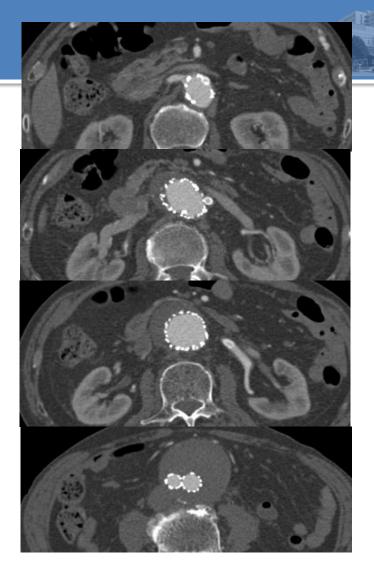
Suitable AAA Morphology for EVAR

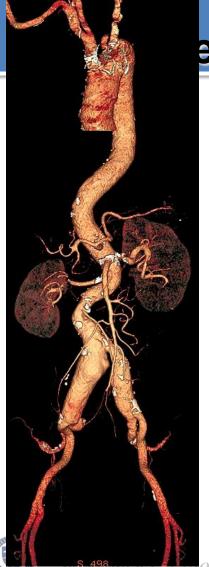

- Aortic neck
 - Diameter: 18~32 mm
 - Length: >10~15 mm
 - Shape: straight, non-conical
 - Angulation <45~60°
 - Minimal thrombus or calcification
- CIA
 - Length: >20 mm
 - Diameter: 8 ~ 22 mm
- EIA
 - Diamter: > 7 mm
 - minimal Ca. & tortuosity

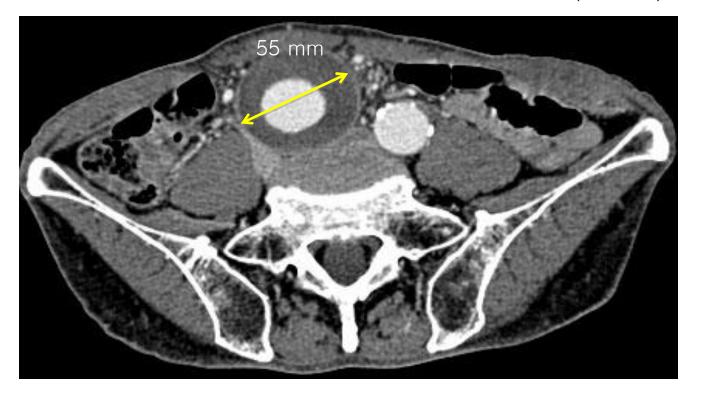



Severance Cardiovascular Hospital, Yonsei University Health System

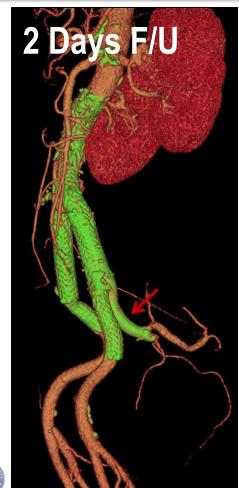


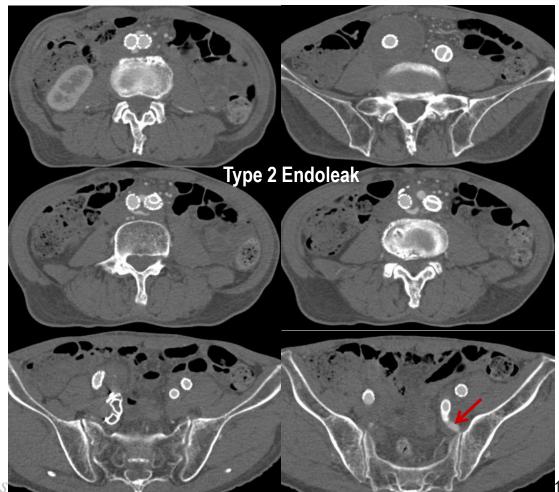



Severance Cardiovascular Hospital, Yonsei University Health System


Severance Caraiovascuiar Hospitai, 10nsei University Health System

eral CIA Aneurysm


M / 76 JTH (#7461138)



Sevenine Calarovascular Hospital, Yonsei University Health System

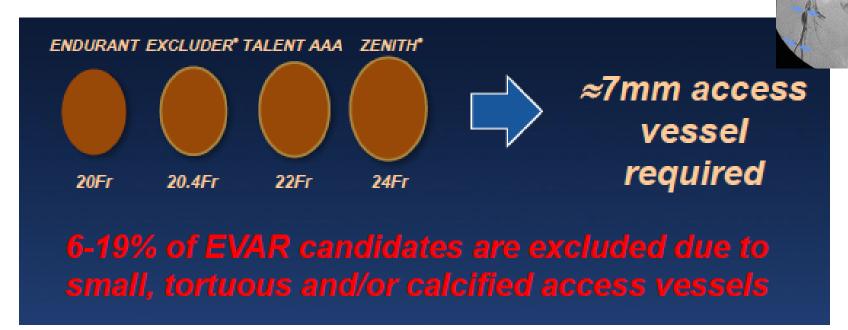
Bilateral CIA Aneurysm

138JTH

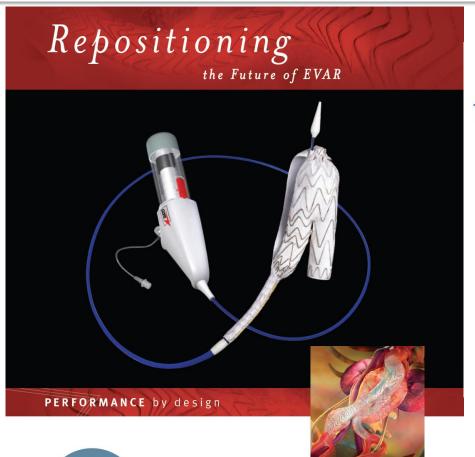
Limitations of Current Devices

Limitations

- Hostile neck
- Inability of reposition
- Large device profile
- Endoleak
- Juxta- or suprarenal AAA


Required Improvement

- Flexibilty and conformability
- Controllable deployment
- Migration resistance
 - · Low profile
 - Long-term durability
 - Fenestrated/branched endograft

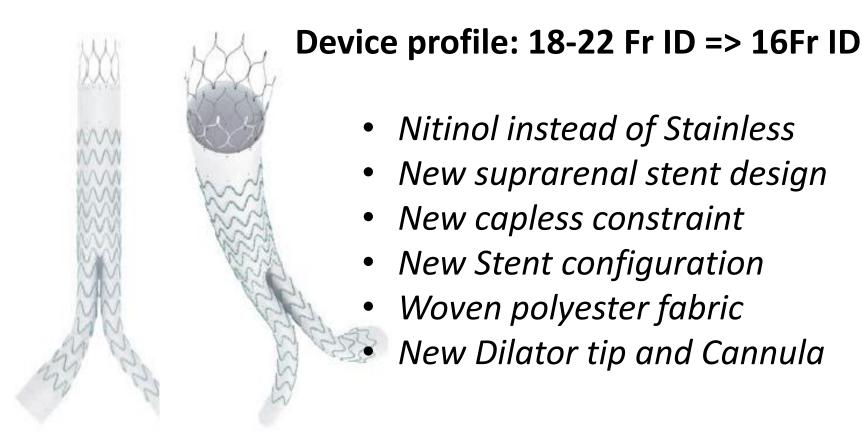

Current Delivery System Profiles

Outer diameters

Excluder & C3 Delivery System (Gore)

35 mm Trunk-Ipsilateral Legs

- Expands aortic neck diameter treatment range to 19–32 mm*
- 18 Fr low profile design
- 36 mm Aortic Extender also available


23 and 27 mm Contralateral Legs

- Expands iliac diameter treatment range to 8–25 mm
- 14-15 Fr introducer sheath compatible
- Available in 10, 12 and 14 cm lengths

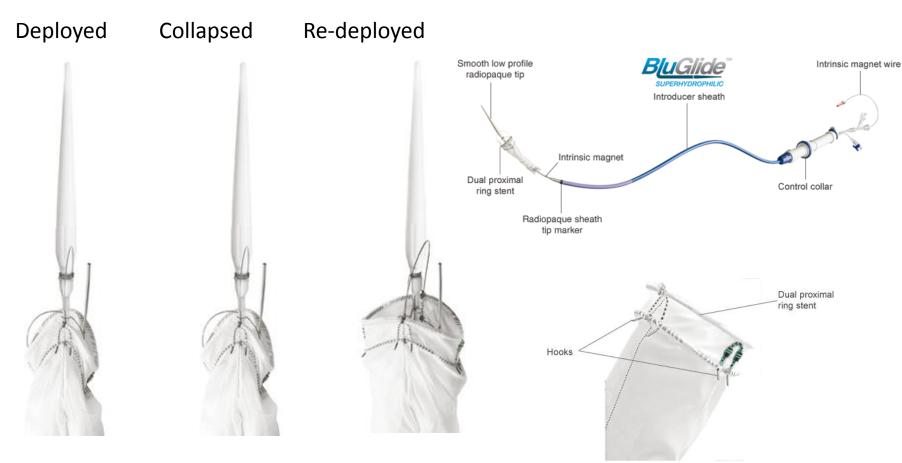

Zenith Low Profile (Cook)

Ovation (Trivascular)

14F OD Aortic Body 13F OD Iliac Limbs

- Tri-modular design
- Suprarenal stent with integral anchors
- Inflatable sealing rings
- Low viscosity, radiopaque biocompatible fill polymer
- Kink resistant iliac limbs
- Hydrophilic catheter coating

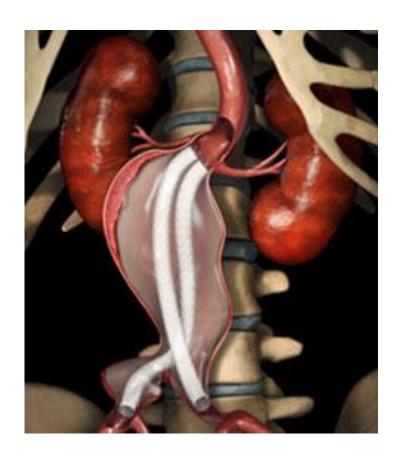
Anaconda (Vascutek, Terumo)



- Modular type:
 - Avoid mechanical coupling of perirenal aorta to iliacs
 - Avoid longitudinal rigidity
 - Enhance radial support
- Transmural Hooks
- Advanced deployment methodology:
 - Repositionalbe
 - Contralateral limb: magnet assisted cannulation

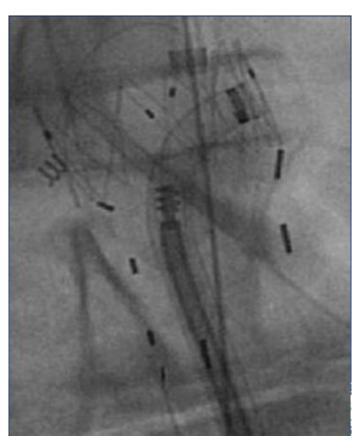
Repositionable

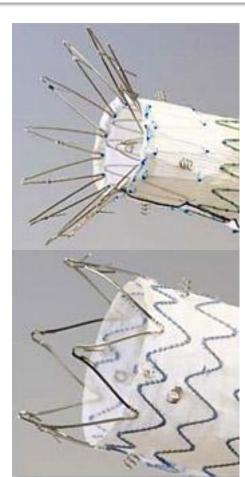
Newer Divices Profiles



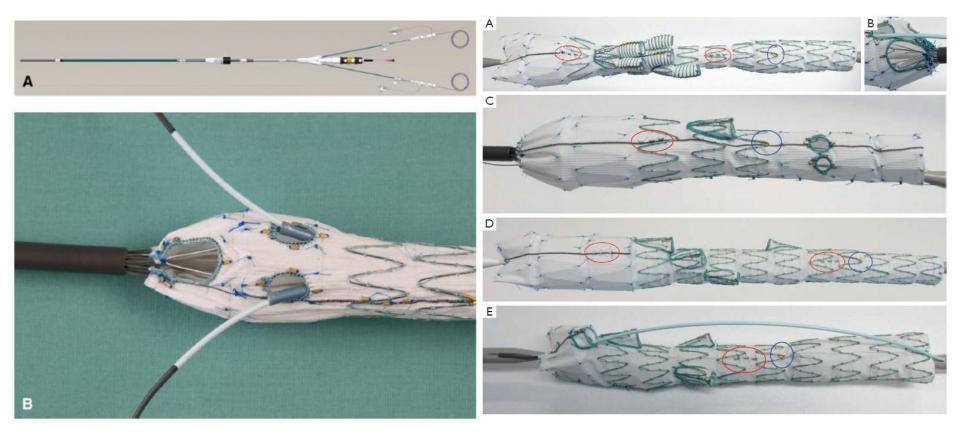
Company	Device	Profile	Neck Length	Neck Diameter	lliac Diameter
Endologix	AFX	19F	15mm	32mm	23mm
Medtronic	Endurant	18F - 20F	10mm	32mm	23mm
Cook	Zenith LP	16F - 18F	15mm	32mm	23mm
Gore	С3	18F - 20F	15mm	29mm	23mm
Trivascular	Ovation	14F - 15F	7mm	32mm	23mm
Endologix	Nellix*	17F - 18F	5mm	34mm	35mm
JNJ	Incraft	14F	15mm	32mm	23mm
Terumo	Anaconda	21F - 23F	15mm	32mm	23mm

Nellix (Endologix)




- Dual balloon expandable endoframes
- Polymer filled endobags
- => obliterate aneurysm sac, provide support and eliminate endoleak space
- Fixation is not dependent on proximal neck and iliac arteries
- Common iliac aneuryms are treated with preservation of internal iliac

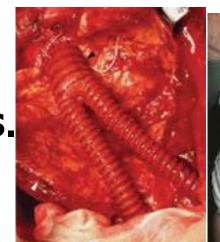
EndoStples (Aptus)



Severance Cardiovascular Hospital, Yonsei University Health System

Fenestrated/Branched Stent Grafts (Cook)

Conclusion


- EVAR for AAA is achieved with relatively high success rate.
- EVAR is associated with relatively low peri-procedural mortality and morbidity rates.
- Currently, EVAR is indicated only for AAA with suitable anatomic criteria.
- However, newer devices will expand application of EVAR in AAA patients with complex anatomy

What is Better?



ascular Hospital, Yonsei University Health System